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A study is made of the influence of the internal heat source on the factors of intensity of the stresses at the
tip of an arbitrarily oriented edge cut in a homogeneous half-plane.

Introduction. Heating of materials by locally distributed heat sources is widely used in engineering practice.
In the presence of defects of the type of cracks, inclusions, etc., in thermoelastic bodies, one observes considerable sin-
gularities of the temperature stresses near the tips of the defects, which often lead to failure of structures. The tem-
perature stresses initiated by the heat source near the internal tip of an edge crack which is perpendicular to the
boundary of a half-plane have been investigated earlier in [1].

In the present work, we consider the problem of static thermoelasticity for a semiinfinite plate with an arbi-
trarily oriented edge crack. It is assumed that the surfaces of the plate and the edges of the crack are free of external
forces and are heat-insulated. The thermal stresses in the body are caused by an internal stationary heat source acting
near the tip of the cut. As a consequence of the linearity of the thermoelasticity problem we represent its solution in
the form of a sum of the solutions of:

(1) the basic problem of thermoelasticity for a semiinfinite plate without a crack in the case of the action of
a heat source;

(2) the perturbed problem of elasticity theory for a plate with an edge crack to whose edges one applies
forces (of opposite sign) obtained by solution of the first problem;

(3) the problem on determination of the stressed state initiated by the perturbation of the temperature field as
a consequence of the presence of the crack.

In this work, we consider only the first and second problems, since the third problem has already been solved
in [2]. A singular integral equation for the derivative of the jump of normal displacements on the cut edges has been
obtained. The numerical solution of this equation has been constructed by the mechanical-quadrature method [3]. The
influence of the angle of orientation of the crack on the factors of intensity of normal KI and tangential KII stresses
has been investigated.

Formulation of the Problem. Let us consider a homogeneous isotropic semiinfinite plate (generalized plane
stressed state) having an arbitrarily oriented edge crack. A lumped heat source of constant power is acting near the
internal tip of the crack (Fig. 1). The lateral surfaces of the plate and the edges of the crack are heat-insulated. We
disregard a possible contact of the cut edges. The temperature and the stress decrease with distance from the plate sur-
face.

In the rectangular coordinate system xOy (Fig. 1), the solution of the first (basic) problem has the form [4]
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Solution of the second (perturbed) problem by the methods of the theory of functions of a complex variable
[1] is reduced to the solution of the singular integral equation

 ∫ 

−1
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_____
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Fig. 1. Scheme of the problem.
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 ; (5)

P (η) = σ + iτ ; (6)

η = x1
 ⁄ c ,   x1 = x cos ω − y sin ω − c ⁄ 2 . (7)

The vinculum denotes the conjugates. The sought function g′(ξ) in the integral equation (3) represents the derivative
of the jump of normal displacements of the crack edges.

Numerical Analysis. In the problem in question, the mechanical-quadrature method of solution of the singular
integral equation used in the case of internal cracks [5] cannot be employed directly: the kernels K(ξ, η) (4) and
L(ξ, η) (5) of the integral equation (3) contain an "immovable" singularity at ξ = η = −1 in addition to a singularity
of the Cauchy type. Therefore, we use the method (proposed in [3]) of numerical solution of a singular integral equa-
tion with an "immovable" singularity, which enables us to seek the solutions in the class of functions of index 1 (i.e.,
functions processing an integrable singularity in the cut tips). The function g′(ξ) is sought in the form

g′ (ξ) = 
V (ξ)

√1 − ξ2
 ,   ξ  < 1 , (8)

where V(ξ) is the Lagrange interpolation polynomial
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by the Chebyshev nodes

ξm = cos 
π (2k − 1)

2n
 ,   k = 1, 2, ..., n . (10)

Here ∑
′
 implies that the first term under the sign of summation should be multiplied by 1/2.

Since the function V(ξ) at ξ = −1 (i.e., in the tip of the crack emerging at the edge of the plate) has a sin-
gularity of order lower than 1/2, we assume that

V (− 1) = 0 . (11)

With account for relations (8)–(10), the singular integral equation (3)–(7) and equality (11) will be represented
in the form of the system of linear algebraic equations
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After the solution of (12) for the values of V(ξk) according to the formula [6]
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we determine the stress intensity factors near the internal tip of the crack.
The independent input parameters of the problem are c∗  = c/h and ω, We needed no more than 20 collocation

nodes to attain a relative accuracy of computations of 1%.
The dependences of the dimensionless stress intensity factors

KI
∗
 = 

KI

Qβt √ c
 ,   KII

∗
 = 

KII

Qβt √ c

on the slope of the cracks ω are presented in Fig. 2.

CONCLUSIONS

It has been established that:
(1) the intensity of normal stresses is much higher than the intensity of tangential stresses (KI

∗  >> KII
∗ );

(2) irrespective of the crack length, the maximum value of the normal stresses is attained when the crack is
perpendicular to the plate’s edge (ω C 90o), while that of the tangential stresses is attained at ω C 35o;

(3) as the heat source approaches the internal tip of the crack, the intensity of the normal stresses increases
while the intensity of the tangential stresses decreases.

NOTATION

c, crack length; d, plate thickness; h, distance from the plate’s edge to the heat source; x and y, axes of the
rectangular coordinate system; ω, slope of the crack; βt = αtE; E, Young modulus; λ, thermal conductivity; αt, coef-
ficient of linear thermal expansion; q, heat-source power; KI and KII, stress-intensity factors; σxx, σyy, and σxy, stresses;
σ and τ, normal and tangential stresses at the edges of the cut; Tk, Chebyshev polynomials of the first kind of order
k; c∗ , dimensionless crack length; i = √−1 ; ξ, variable of integration in the interval [−1; 1]. Subscripts: t, thermal; I
and II, refer to the normal and tangential stresses.

Fig. 2. Dimensionless stress intensity factors KI
∗  (a) and KII

∗  (b) vs. slope of
the crack ω: 1) c∗  = 0.1, 2) 0.3, 3) 0.5, and 4) 0.7.
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